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Equations to calculate the optical properties of a flat but rough interface are given. This interface is supposed
to be much thinner than the wavelength of the light, and made of N−1 layers of refractive indices nm �for layer
m� between two media of refractive indices n0 and nN. The interfaces separating two layers are rough. The
roughness is supposed to have weak slopes ���Z��z��1�. These equations can be solved very simply for any
N values. The explicit solution for N=2 �one rough layer� is given for the incidence angle equal to the Brewster
angle in order to apply the result to ellipsometric measurements, specially on liquid interfaces whose roughness
originates from thermal fluctuations and is depending on a small number of parameters.
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I. INTRODUCTION

Ellipsometry is a very sensitive optical technique to char-
acterize flat interfaces �1�. The ellipsometer allows the deter-
mination of the change of the state of polarization of a beam
reflected from the studied interface. From this change, one
deduces the ratio of the reflectivity rp of the interface for the
waves of polarization p, i.e., a polarization in the plane of
incidence, over the reflectivity rs for the waves of polariza-
tion s, i.e., a polarization perpendicular to the plane of inci-
dence.

For Fresnel interfaces �i.e., ideal flat interfaces for which
the refractive index changes abruptly from that of the inci-
dence medium, n0, to that of the second medium, nN at z
=0� this ratio, rp /rs, is a real number which vanishes at the
Brewster incidence �B �given by tan �B=nN /n0�. However,
for real interfaces this ratio is a complex number �rp /rs , =�
+ i�̄� because the phase change at the reflection is different
for the s and p polarizations. Only the real part of the signal
vanishes at the Brewster angle for real interfaces between
two nonabsorbing media.

In the following the interfaces are supposed much thinner
than the wavelength of the light. Consequently �, the real
part of rp /rs, is very close to the value given by Fresnel’s
equations. To a good approximation the imaginary part, �̄
�called ellipticity� is a number independent of the incidence
angle in the vicinity of the Brewster angle where it is mea-
surable. Consequently, for interfaces much thinner than the
wavelength of the light, the ellipsometry gives only one item
of information, the ellipticity �̄ which measures the deviation
of the real interface from a Fresnel interface. It is so sensitive
that it gives information on interfaces as thin as 1 Å.

However, the interpretation of the ellipsometric signal
needs models. For interfaces much thinner than the wave-
length of the light ����� the most currently used model
�and historically the first which was proposed� is the Drude’s
model that attributes the ellipsometric signal to a flat layer of
thickness � at the interface where the refractive index n�z� is
different from those of the two media on the two sides of the
interface, n0 and nN �2�. The ellipticity is given by

�̄ =
�

�

�n0
2 + nN

2

n0
2 − nN

2 �
−�

+� n0
2 − n�z�2

n�z�2 dz .

Many authors deduce the interfacial thickness from a
measurement of �̄ and this equation. However, this needs the
knowledge of the refractive index through the interfacial
film. In many cases n�z� is taken as a constant and estimated.
This is a good approximation for thick wetting films since
their refractive indices are generally close to that of the bulk
wetting liquid �7,8�. In some cases, it can be given by theory.
For instance, it results from a continuous variation of the
density or the composition for liquid-vapor or liquid-liquid
interfaces. Close to the liquid-gas or liquid-liquid critical
point the profile is well described by a van der Waals–
Landau theory �3–6�. In these examples the interfacial layer
is homogenous. However, the Drude’s equation applies also
to interfacial layers constituted by an agglomerate of do-
mains of different refractive indices much smaller than the
wavelength of the light. In this case, the refractive index n�z�
of the interfacial layer is an effective one deduced from the
composition of the film and the refractive indices of the dif-
ferent domains �9�. Moreover, an optical anisotropy of the
interfacial film can be taken into account in this model
�1,10–12�.

A second and more recent model attributes the ellipsomet-
ric signal to the interfacial roughness �Fig. 2�a��. Crossing
the interface Z�x ,y�, the refractive index changes abruptly
from the refractive index of the incidence medium, n0, to that
of the second medium, nN. When the mean slope of the in-
terface is very large, ��Z�x ,y���1 the ellipticity can be cal-
culated with the Drude’s model in which n�z� is an effective
refractive index �13�. When the interfacial slope is small
��Z�z���1 the Drude’s model does not apply since the ellip-
ticity becomes a function of the scale of the roughness and
necessitates a second model �13–16�. This model was first
applied to the calculation of the ellipticity induced by ther-
mally excited waves on liquid-liquid �14–18� and liquid-
liquid interfaces covered with a surfactant film lowering the
interfacial tension. The model allows the determination of
the cutoff at high frequency for the capillary waves which is
a function of the bending elasticity of the surfactant film
�12,18,19�.

These two models are two limits of a more general model
describing the interface as a rough film with a constant thick-
ness �12,18–20� �Fig. 2�b��. The two faces of the film have
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the same roughness. The ellipticity is the sum of the elliptic-
ity due to the thickness of the layer and that due to the
roughness �21�,

�̄ = �̄ � + �̄R.

One can find thin interfaces not described by the above
models. This happens for wetting films on a liquid when the
interfacial tension between the liquid of the film and the
liquid beneath is very low while the interfacial tension be-
tween the liquid film and the vapor is large. The amplitude of
the thermal fluctuations of one face of the film are large and
comparable to the film thickness while the second face of the
film is flat since its surface tension is large �Fig. 2�c��. Such
films are obtained when a surfactant film covers the liquid-
film interface �22,23� or when the liquid-film interface is
close to a critical point �24,25�. Up to now, the film thickness
has been deduced from ellipsometric measurements suppos-
ing that the Drude’s equation gives the mean value of the
film thickness without proof of the validity of this assump-
tion. Bedeaux and Vlieger have given an extensive study of
the optical properties of thin film �26�. However, their ap-
proach is more adapted to specialists of ellipsometry on solid
surfaces than to specialists of physical chemistry working on
liquid interfaces.

In the following we give a method to calculate the ellip-
sometric signal for a general model, a thin multilayered
rough film �Fig. 1�a�� constituted by N−1 films separated by
N rough interfaces. The roughness considered has small am-
plitude such that it can be considered as a superposition of
independent modes of wave vector q and amplitude 	m,q �for

the interface m� with q�	mq��1. In previous calculations, it
was shown that modes with wavelengths larger than the
wavelength of the light, � �q�
1�, do not contribute to the
imaginary part of the ellipsometric signal �13�. Conse-
quently, in the following calculation, one takes into account
only modes with large wave vectors q �q�
1�. The decom-
position in modes is well adapted to liquid surfaces since the
mean square amplitude of each mode of the roughness of
these surfaces due to thermal fluctuations can be deduced
from the hydrodynamics and the thermodynamics with a
small number of parameter �for instance surface tension, and
surface rigidity�.

In a second part, one solves the case N=2 and gives ex-
plicitly the equation for this case: a rough film of dielectric
constant �1 between two media of dielectric constants �0 and
�2. Then one applies the result to the analysis of ellipsomet-
ric signals obtained from wetting films on liquid and surfac-
tant films at liquid interfaces.

In our general model �Fig. 1�a��, the interface is made of
N−1 thin and rough layers between the semi-infinite incident
medium 0 �dielectric constant �0� and the semi-infinite me-
dium N �dielectric constant �N�. The layer m has a dielectric
constant �m and stretches from the interface m to the inter-
face m+1. These dielectric constants are those at the fre-
quency of the light, i.e., equal to the square of the refractive
index. The coordinates of the interface m are given by

Zm�r� = hm + 	m�r� , �1�

where hm is the mean z coordinate of the interface m and
	m�r� its roughness whose mean value is zero. r is a vector of
the plane x ,y. This roughness can be written as a sum of
modes,

	m�r� = �
�q�
1/�

	m,q exp�iq · r� , �2�

with q�	mq��1 and one supposes that two modes of wave
vectors q1 and q2 are not correlated if q1�q2. Moreover,
	m−q= �	m,q�* since 	m�r� is real.

The method to calculate the field reflected by the interface
was developed by Croce and co-workers �14,27–30�. The
distribution of matter forming the interface is called R for
real. A simpler distribution I �for ideal� is substituted for R. I
is such that the reflectivity of the interface in this new ideal
distribution is easy to calculate. Moreover, the distribution I
is chosen such that the difference between the two distribu-
tions I and R is limited to a small region of the space. In our
case I is a Fresnel interface below the real one but close to
and parallel to this one �Fig. 1�b��. The electromagnetic field
reflected in the real case R is obtained by adding to the
electromagnetic field reflected in the ideal case I, the elec-
tromagnetic field radiated by dipolar sources located in the
small region of the space where the distributions of matter I
and R are different.

The ellipticity can be written Im��rp
F+�rp� / �rs

F+�rs��,
where rF is the reflectivity of the Fresnel interface and �r,

FIG. 1. �a� Model of interface made of N−1 rough layers sepa-
rating the incidence medium of dielectric constant �0 from a me-
dium of dielectric constant �N. This interface is called real interface
in the following. �b� Ideal interface I �Fresnel interface between
media of dielectric constant �0 and �N� and region of the space
�grey zone� where the dipolar moments that intervene in the calcu-
lation of the reflected light are localized.
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the correction corresponding to the light radiated by the di-
polar sources. The indices s and p indicate the polarization
�respectively, perpendicular and in the plane of incidence�.
For thin interfaces rs

F��rs. Moreover, at the Brewster angle,
rp

F=0 and consequently �̄	 Im��rp /rs
F�.

The dipolar sources in a volume dv around the point P are
given by the equation

��R − �I�
4�

ER�P�dv , �3�

where �R and �I are the dielectric constant at the point P in
the cases R and I, respectively, ER�P� is the electromagnetic
field at the same point in the real case R.

The dipolar sources �Eq. �3�� vanish except in a thin and
flat region of the space whose thickness is ���. One can
imagine that this region of the space is constituted of a col-
lection of patches whose dimensions are 
x, 
y �with 
x
��� and 
y�� and thickness �. Moreover, the roughness
being at small scale �q�
1�, the patches are similar and
consequently, the intensity of the electromagnetic field radi-
ated by a patch is independent of its position in the plane x,
y. The calculation of the field radiated by dipoles �Eq. �3��,
reduces to the calculation of the field radiated by one patch
�which does not take into account the phase of the waves
because the size of a patch is much smaller than �3� followed
by a summation on the fields radiated by the different
patches �which is only a summation on the phase because the
intensity of the field radiated by one patch is independent of
its position x, y� �13�. In addition, as the phase variation of
the electromagnetic field inside a patch is neglected, this
field satisfies electrostatic laws �electrostatic approximation
�31–33��. After summation on the phase, the field radiated by
dipoles �Eq. �3�� is given by

�Eu =
i

2Ak0Z
�
m=1

N �
Vm

�km
2 − k0

2�Wu · ER�P�dv , �4a�

where Vm is the illuminated volume of the layer m of the
interface and ER�P� the electrostatic field, i.e., the field
ER�P� without its phase term.

The electrostatic field ER�P� derives from a potential
VR�P�. The integration �4a� on volumes Vm becomes an in-
tegration on the surfaces of volumes Vm �9�,

�Eu =
i

2Ak0Z
�
m=1

N �
Sm

�km
2 − k0

2�VR�P�Wu · dS , �4b�

dS=N dS, where N is the vector normal to the surface Sm of
the volume Vm. Wu is a vector depending upon the polariza-
tion u �s or p�, km is the amplitude of the wave vector of the
light in the layer m. In the following one takes u= p since the
calculation of �̄ needs only the calculation of �Ep. The com-
ponents of the vector Wp are functions of the components of
the wave vector of the incident light k0 �k0x ,k0z� and that of
the transmitted light kN �kNx ,kNz� �14�:

�Wp�x =
2k0zkNzk0

kNzk0
2 + k0zkN

2 ,

�Wp�y = 0, �5�

�Wp�z = − 2
k0,x

k0

k0,zkN
2

kN,zk0
2 + k0,zkN

2 .

The exact value of the field ER or the potential VR in the real
configuration R is unknown. However, it can be obtained by
a development in the series. In the following we calculate the
reflected field to second order in �q	q�2. It can be shown that
a development of the potential VR to first order is sufficient to
get the reflected field to second order using Eqs. �4a� or �4b�.

Moreover the modes q being uncorrelated, the reflected
light is calculated for one mode and a summation over the
modes is performed at the end of the calculation.

To first order in q	m,q, VR�P� inside the layer m can be
written as

VR
�m��P� = V0

�m��P� + V1
�m��P�

= −
�0

�m
E0,z z − E0,x r + �

�q�
1/�

�U1,q
�m� exp��q�z�

+ V1,q
�m� exp�− �q�z��exp�iq · r� , �6�

where �E0,x ,E0,z� are the components of the field E0 to order
zero in the incident medium, far from the interface. It is the
sum of the incident field and the reflected field to order zero
�Fresnel equations�,

E0,x = 2
k0,zkN,zk0

kN,zk0
2 + k0,zkN

2 E0,

�7�

E0,z = 2
k0,x

k0

k0,zkN
2

kN,zk0
2 + k0,zkN

2 E0,

E0 is the amplitude of the electric field of the incident light
beam. The coefficients U1,q

�m� and V1,q
�m� in Eq. �6� are deduced

from electrostatic equations, i.e., the continuity of the poten-
tial at the interface between the layer m and the layer m−1
and the continuity of the component of the displacement nor-
mal to the interface to first order in q	mq,

VR
�m�

„r,Zm�r�… = VR
�m−1�

„r,Zm�r�… , �8a�

�mN · �VR
�m�

„r,Zm�r�… = �m−1N · �VR
�m−1�

„r,Zm�r�… ,

�8b�

where N is the vector normal to the interface at the point
(r ,Zm�r�). Taking into account Eqs. �1�, �2�, �6�, �8a�, and
�8b� one obtains

− 
 1

�m−1
−

1

�m
��0E0,z	m,q + �U1,q

�m� − U1,q
�m−1��exp��q�hm�

+ �V1,q
�m� − V1,q

�m−1��exp�− �q�hm� = 0, �9a�

− i��m − �m−1�q · E0,r	mq

+ �q���mU1,q
�m� − �m−1U1,q

�m−1��exp��q�hm�

− ��mV1,q
�m� − �m−1V1,q

�m−1��exp�− �q�hm� = 0. �9b�
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Moreover, when media 0 and N are semi-infinite, the com-
ponents U1,q

�0� and V1,q
�N� vanish,

U1,q
�0� = 0,

�10�
V1,q

�N� = 0.

II. POTENTIAL, VR
„m…

„P… INSIDE THE LAYER m
CALCULATED TO FIRST ORDER IN „q�m,q…

The 2N equations �9� allow the calculation of the coeffi-
cients U1,q

�m� and V1,q
�m� of the electrostatic potential VR

�m��P�.
These 2N equations simplify and one obtains these coeffi-
cients by solving the following progressions:

U1,q
�m� = �A1

m − v1
mV1,q

�m��/um and V1,q
�m−1� = �A2

m − u2
mU1,q

�m��/v2
m

�11�

with V1,q
�N�=0.

Starting from V1,q
�N�=0, one calculates successively U1,q

�N�,
V1,q

�N−1�, U1,q
�N−1�, and so on up to m=0. The coefficients u1

m, u2
m,

v1
m, v2

m, A1
m, A2

m are obtained by solving the following pro-
gressions from m=1 to m=N, starting from the initial values
u1

0=1, v1
0=0, A1

0=0:

u1
m = u1

m−1 + e2�q�hm
��m−1 − �m�
��m−1 + �m�

v1
m−1,

v1
m = v1

m−1 + e−2�q�hm
��m−1 − �m�
��m−1 + �m�

u1
m−1,

u2
m =

2�m

��m−1 + �m�
u1

m−1,

�12�

v2
m = e−2�q�hm

��m−1 − �m�
��m−1 + �m�

u1
m−1 + v1

m−1,

A1
m =

2�m

��m−1 + �m�
A1

m−1 −
1

q�m

��m−1 − �m�
��m−1 + �m�

„e−�q�hmu1
m−1�q�0E0,z

+ iqx�mE0,x� + e�q�hmv1
m−1�q�0E0,z − iqx�mE0,x�…	m,q,

A2
m = A1

m−1 −
e�q�hm

q�m

��m−1 − �m�
��m−1 + �m�

u1
m−1�q�0E0,z

+ iqx�m−1E0,x�	m,q.

III. REFLECTED FIELD TO SECOND ORDER IN „q�q…

The above calculation and Eq. �6� give the potential VR
�m�

to first order in �q	m,q�. From this potential and Eqs. �4�, �5�
and �7� one obtains the field radiated by the dipoles of the
interface to second order in q	q.

At the Brewster angle the equations simplify by using the
following equations:

k0,x =
k0kN

�k0
2 + kN

2
,

k0,z =
k0

2

�k0
2 + kN

2
, �13�

kN,z =
kN

2

�k0
2 + kN

2
.

The real field ER
�m��P� in each layer m derives from the

potential VR
�m��P� �Eq. �6��. It is the sum of a uniform com-

ponent �E0,r ,
�0

�m
E0 ,z� which is the order zero in q	m,q and a

nonuniform component which is the order one in q	m,q. The
field radiated by the dipoles induced by the uniform compo-
nent can easily be calculated using Eq. �4a�, taking into ac-
count Eqs. �5� and �7�. After summation on the volumes, one
obtains

Ep
�0� = i

1

k0,z
�
m=1

N−1

�hm+1 − hm�
��Wp�x�2 −
�N

�m
��Wp�z�2�E0.

�14a�

At the Brewster angle, taking into account Eqs. �5� and
�13� one obtains

Ep
�0� = i

�

�

1
��0 + �N

�
m=1

N−1
��m − �0���m − �N�

�m
�hm − hm+1�E0.

�14b�

The first term due to the roughness which does not vanish
is second order in q	q. This term is easier to calculate using
Eq. �4b� than Eq. �4a� and is obtained by incorporation of the
first order term V1

�m��P� of the potential VR
�m��P� in Eq. �4b�.

Remarking that V1,q
�m��r ,Z�r��=V1,q

�m��r ,hm�+ d
dzV1,q

�m��r ,hm� �m,q,
Eq. �4b� becomes

�Ep
�2� =

i

kN,zk0
2 + k0,zkN

2 �
m=1

N

�
�q�
1/�

�km
2 − k0

2�

��− iqxkn,zk0„�U1,q
�m� exp��q�hm� + V1,q

�m� exp�− �q�hm��	m,−q
* − �U1,q

�m� exp��q�hm+1� + V1,q
�m� exp�− �q�hm+1��	m+1,−q

*
…

+ �q�
k0,x

k0
kn

2
„�U1,q

�m� exp��q�hm� − V1,q
�m� exp�− �q�hm��	m,−q

* − �U1,q
�m� exp��q�hm+1� − V1,q

�m� exp�− �q�hm+1��	m+1,−q
*

…
 �15�
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with 	n+1,−q=0 since the interface N+1 is the flat interface of
the ideal distribution of matter I. In this equation, terms
which contain exp�2iq ·r� or exp�−2iq ·r� are eliminated
since their summation on the illuminated area vanishes.

The ellipticity at the Brewster angle is given by �̄
=Im��rp /rs

F� with rs
F= ��0−�2� / ��0+�2�. From the zero-order

term of the reflected light, one deduces the zero-order term
of the ellipticity,

�̄�0� = i
�

�

��0 + �N

�0 − �N
�
m=1

N
��m − �0���m − �N�

�m
�hm − hm+1� . �16�

This last equation is the Drude’s equation for thin films
�when the roughness vanishes�.

IV. ONE ROUGH LAYER

For one rough layer, N=2. The mean thickness of the
layer is h=h1−h2. One obtains the second-order term in q	
of the ellipticity,

�̄�2� = −
�

�

��0 + �2

��0 − �2�
1

�1
�

�q�
1/�

1

q���0 + �1���1 + �2� + ��0 − �1���1 − �2�e−2�q�h�

��	1,q	1,−q���1 + �2��q2�2 + qx
2�1� + ��2 − �1��q2�2 − qx

2�1�e−2�q�h���1 − �0�2

+ 	2,q	2,−q���0 + �1��q2�0 + qx
2�1� + ��0 − �1��q2�0 − qx

2�1�e−2�q�h���1 − �2�2

+ 2�	1,q	2,−q + 	1,−q	2,q���0 − �1���1 − �2��qx
2�1

2 + q2�0�2�e−�q�h� �17a�

which simplifies for an isotropic roughness �	1,q and 	2,q are independent of the direction of the vector q and the mean value
of qx

2 for q=constant is q2 /2�. The ellipticity becomes

�̄�2� = −
�

2�

��0 + �2

��0 − �2�
1

�1
�

�q�
1/�

q

��0 + �1���1 + �2� + ��0 − �1���1 − �2�e−2�q�h

��	1,q	1,−q���1 + �2��2�2 + �1� + ��2 − �1��2�2 − �1�e−2�q�h���1 − �0�2

+ 	2,q	2,−q���0 + �1��2�0 + �1� + ��0 − �1��2�0 − �1�e−2�q�h���1 − �2�2

+ 2�	1,q	2,−q + 	1,−q	2,q���0 − �1���1 − �2���1
2 + 2�0�2�e−�q�h� . �17b�

In these two last equations, 	1,q	1,−q and 	1,q	1,−q are the
square of the amplitudes of the modes q of the upper and
lower faces of the film while the term �	1,q	2,−q+	1,−q	2,q�
results from the correlations of the roughness of the upper
and the lower interface. In practice one must take the mean
values of these quantities which fluctuate from one point to
the other or with time for fluid interfaces.

In the following, we examine the application of this equa-
tion to some particular systems that have been studied by
ellipsometry.

V. EXAMPLE OF APPLICATIONS OF THIS MODEL
TO PHYSICAL SYSTEMS

A. Interface between two fluids

One supposes that the interfacial layer in which the re-
fractive index is different from �0 or �2 is much thinner than
the amplitude of the thermal fluctuations and consequently
its thickness can be neglected �Fig. 2�a��. For �1=�0 or �1
=�2 or h=0 and 	2,q=	1,q=	q, Eq. �17b� simplifies and one
obtains the ellipticity of a rough interface between the media
0 and 2 for which the refractive index change abruptly from
�0 to �2 �13–16�,

��̄�2�� = −
3

2

�

�

��0 − �2�
��0 + �2

� �
�q�
1/�

q�	q
2�2� . �18�

Moreover, for interfaces between two fluids, the roughness is
due to thermal fluctuations, the ellipticity fluctuates and the
experiment measures its mean value. The mean square am-
plitude of a mode q is �	q

2�=kBT /�q2 where kB is the Boltz-
mann constant, T is the temperature, and � is the interfacial
tension. The density of modes is qdq /2�,

� �
�q�
1/�

q	q
2� = �

0

qmax kBT

�q2

q2dq

2�
=

kBT

2��
qmax, �19�

qmax is a molecular cutoff limit of validity of the continuous
model of a fluid �15–17�.

B. Interface between two fluids separated by
a film of constant thickness

In practice, the dielectric constant does not change
abruptly from �0 to �2 through a liquid interface. There is a
layer through which the dielectric constant varies from �0 to
�2. Interfaces having a low surface tension can be modeled
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by one �or several� rough layer of refractive index different
from �0 or �2. For simplicity, one supposes that this layer has
a constant thickness.

A similar model applies when there is a surfactant film
with a low surface tension separating two liquid phases �oil
and water phases for instance�. The interfacial film is sup-
posed to have an isotropic dielectric constant �1 and a con-
stant thickness h 	2,q=	1,q=	q �Fig. 2�b��. Moreover, one
supposes qh�1. To first order in qh, Eq. �15� becomes

��̄�2�� = −
3

2

�

�

��0 − �2�
��0 + �2


� �
�q�
1/�

q	q
2�

+ 4h
�0�2

�1

��0 − �1���2 − �1�
��0 − �2�2��0 + �2�� �

�q�
1/�

�q	q�2�� .

�20�

The ellipticity is the sum of three terms: the Drude’s term
�̄�0� �Eq. �16�� due to the film thickness and two roughness
terms �Eq. �20��, one of them similar to �18� and a second
roughness term,

4h
�0�2

�1

��0 − �1���2 − �1�
��0 − �2�2��0 + �2�� �

�q�
1/�

�q	q�2�
which does not appear in the Marvin and Toigo calculation
�21�.

A surfactant film at a liquid-liquid interface is character-
ized by a surface tension and a bending elasticity K. The
mean square amplitude of a thermal mode q is given by the
equation �	q

2�=kBT / ��q2+Kq4�. By integration over the
modes, one obtains

� �
�q�
1/�

q	q
2� = �

0

� kBT

�q2 + Kq4

q2dq

2�

=
1

4

kBT
��K

2 tan−1 �K/�qmax

�
, �21a�

� �
�q�
1/�

q2	q
2� = �

0

qmax kBT

�q2 + Kq4

q3dq

2�

=
kBT

4�K
ln
1 +

K

�
qmax

2 � . �21b�

The bending elasticity introduces a natural cutoff in Eq.
�21a� when

�K/�qmax � 1 
2 tan−1�K/�qmax

�
	 1� .

One obtains �5�

� �
�q�
1/�

q	q
2� = �

0

� kBT

�q2 + Kq4

q2dq

2�
=

1

4

kBT
��K

. �21c�

The first roughness term is proportional to �−0.5, while the
second one has a logarithmic dependence over �. When the
roughness is large �� and K small� a large part of the ellip-
ticity is due to the roughness originating from thermal fluc-
tuations. A plot of the ellipticity as a function of �−0.5 is
linear and the slope of the straight line allows the determi-
nation of the bending elasticity K of the surfactant film
�17–19�.

Remark. In this model the surfactant film is modeled by a
layer of constant thickness of an isotropic medium of refrac-
tive index n1. The model can take into account an optical
anisotropy of the monolayer. This is very simple for a
uniaxial anisotropy of the interfacial layer with an ordinary
dielectric constant �o1, an extraordinary dielectric constant
�e1, and a symmetry axis normal to the surfactant film in
each point or a symmetry axis parallel to the surfactant film.
For a symmetry axis normal to the film one obtains �10�

�̄�0� =
�

�

��0 + �2

�0 − �2

 ��0 − �e1���2 − �e1�

�e1
+ �o1 − �e1�h

�22a�

and ��̄�2�� is obtained by taking �e1 in place of �1 since �1 in
this equation originates from Eq. �8b�. For a symmetry axis
in the plane of the surfactant layer and with a random orien-
tation �11� one obtains

�̄�0� =
�

�

��0 + �2

�0 − �2

 ��0 − �o1���2 − �o1�

�e1
+

�e1 − �o1

2
�h

�22b�

and ��̄�2�� is obtained by taking �o1 in place of �1.

FIG. 2. Three examples of models of rough interfaces employed
to explain some experimental results of ellipsometric measurements
on liquid-liquid interfaces. �a� A thin but rough interface separating
two media of dielectric constant �0 and �2. �b� A thin and rough
layer of constant thickness and dielectric constant �1 separating two
media of dielectric constant �0 and �2. �c� A layer of dielectric
constant �1 with one plane face and one rough face separating two
media of dielectric constant �0 and �2.
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C. A thick fluid layer with very large fluctuations
of its thickness

In some experiments, one observes a thick wetting liquid
film on a liquid for which the surface tension of the lower
interface �liquid-film� is ultralow ��	10−4–10−7 N/m�
while that of the upper interface of the film is large
�10−2 N/m�. Thermal fluctuations of the lower interface are
large and can induce an entropic repulsion between the two
faces of the wetting film due to the fact that the amplitude of
the thermal fluctuations of the lower interface are limited by
the presence of the upper interface. On the contrary, the ther-
mal fluctuations of the upper interface are very small and can
be neglected since its surface tension is large, 	1,q=	1,−q=0
�Fig. 2�c��. This is observed with wetting films close to a
critical point �24,25� or for oil films on water when a surfac-
tant film strongly decreases the oil-water interfacial tension
�22,23�. The ellipticity can be written

�̄�0� + ��̄�2�� = i
�

�

��0 + �2

�0 − �2

��0 − �1���2 − �1�
�1

��h +
3

2

��1 − �2�
��0 − �1�

�2�0 + �1�
��1 + �2�

� �
�q�
1/�


1 +
��0 − �1��2�0 − �1�
��0 + �1��2�0 + �1�

e−2�q�h�q�	2,q�2� .

�23a�

Moreover, the two dielectric constant �2 and �1 �of the liquid
and of the wetting film, respectively� are close and conse-
quently

��1 − �2� � �0,�1 or �2,
��0 − �1��2�0 − �1�
��0 + �1��2�0 + �1�

� 1,

and can be neglected. The ellipsometric signal contains a
thickness term and a roughness term. For systems in which
the amplitude of the high frequency fluctuations of the lower
interface are limited by a bending rigidity �22,23�, Eq. �23a�
becomes

�̄�0� + ��̄�2�� = i
�

�

��0 + �2

�0 − �2

��0 − �1���2 − �1�
�1

�
h +
3

8

��1 − �2�
��0 − �1�

�2�0 + �1�
��1 + �2�

kBT
��K

� .

�23b�

The ratio of the thickness term and the roughness term de-
pends upon the system.

Remark. Equations �4b� and �11� allow the calculation of
the light reflected by a rough interface to first order in h and
second order in the amplitude of the roughness q	q. This
means that this calculation is valid only if the term in �h /��2

which was neglected is much smaller than the roughness
terms. This is generally the case in the experiments in Refs.
�19,22–25� since the roughness and h have the same order of
magnitude.

VI. CONCLUSION

Equations �11� and �12� allow the calculation to second
order in �q	q� of the reflectivity or the ellipticity of any rough
interface whose roughness has a small slope ���	��1�. In
practice, the most interesting case is probably the case of one
homogenous rough layer.

We have solved these equations in the case of one rough
layer and for an incidence equal to the Brewster angle since
this is the angle of incidence used in ellipsometry. At this
angle the equations simplify. We have specially studied the
case of liquid films whose roughness originates from thermal
fluctuations and is a function of a small number of param-
eters.

Since Drude, it is well known that ellipsometry is able to
give information on the interfacial thickness of interfaces
much thinner than the wavelength of the light. As we have
shown in this paper, ellipsometry allows giving more infor-
mation when the interfacial tension is sufficiently low to in-
duce thermal fluctuations with amplitudes comparable to the
intrinsic thickness of the interface. This must be noticed
since ellipsometry is a technique that has the advantage on
x-ray reflectivity or neutron reflectivity to be much cheaper
and simpler to use. Moreover it allows studying interfaces
between two fluids as oil-water interfaces which cannot be
studied—or are very difficult to study—using x-ray reflectiv-
ity or neutron reflectivity. The model presented in this paper
allows the determination of what parameter can be extracted
from ellipsometry as a function of the optical characteristics
of the interface.

�1� R. M. A. Azzam and N. M. Bashara, Ellipsometry and Polar-
ized Light �North-Holland, Amsterdam, 1977�.

�2� P. Drude, Ann. Phys. 43, 126 �1991�.
�3� J. D. van der Waals, Z. Phys. Chem., Stoechiom. Ver-

wandtschaftsl. 13, 657 �1894�.
�4� J. W. Cahn and J. E. Hilliard, J. Chem. Phys. 28, 258 �1958�.
�5� S. Fisk and B. Widom, J. Chem. Phys. 50, 3219 �1969�.
�6� J. S. Rowlinson and B. Widom, Molecular Theory of Capillar-

ity �Oxford University, London, 1982�.
�7� O’D. Kwon, D. Beaglehole, W. W. Webb, B. Widom, J. W.

Schmidt, J. W. Cahn, M. R. Moldover, and B. Stephenson,
Phys. Rev. Lett. 48, 185 �1982�.

�8� D. Bonn and D. Ross, Rep. Prog. Phys. 64, 1085 �2001�.
�9� N. Nagy, A. Deák, Z. Hórvölgyi, M. Fried, A. Agod, and I.

Bársony, Langmuir 22, 8416 �2006�.
�10� F. Abelès, Ann. Phys. �Paris� 5, 596 �1950�.

OPTICAL REFLECTIVITY OF THIN ROUGH FILMS:… PHYSICAL REVIEW E 75, 061601 �2007�

061601-7



�11� H. Bercegol, F. Gallet, D. Langevin, and J. Meunier, J. Phys.
�France� 50, 2277 �1989�.

�12� J. Meunier, in Light Scattering by Liquid Surfaces and
Complementary Techniques, edited by D. Langevin �Marcel
Dekker, New York, 1992�, Chap. 17, p. 333.

�13� J. Meunier, Physica A 230, 27 �1996�.
�14� P. Croce, J. Opt. �Paris� 8, 127 �1977�.
�15� D. Beaglehole, Physica B & C 100, 163 �1980�.
�16� B. J. A. Zielinska, D. Bedeaux, and J. Vliegler, Physica A 107,

91 �1981�.
�17� J. Meunier, J. Phys. �France� 48, 1819 �1987�.
�18� J. Meunier, J. Phys. �France� Lett. 46, L-1005 �1985�.
�19� L. T. Lee, D. Langevin, J. Meunier, K. Wong, and B. Cabane,

Prog. Colloid Polym. Sci. 81, 209 �1990�.
�20� J. W. Schmidt and M. R. Moldover, J. Chem. Phys. 79, 379

�1983�.
�21� A. M. Marvin and F. Toigo, Phys. Rev. A 26, 2927 �1982�.
�22� H. Kellay and J. Meunier, Phys. Rev. Lett. 69, 1220 �1992�.
�23� E. Bertrand, D. Bonn, H. Kellay, B. P. Binks, and J. Meunier,

Europhys. Lett. 55, 827 �2001�.
�24� D. Ross, D. Bonn, and J. Meunier, Nature �London� 400, 737

�1999�.
�25� D. Ross, D. Bonn, and J. Meunier, J. Chem. Phys. 114, 2784

�2001�.
�26� D. Bedeaux and J. Vlieger, Optical Properties of Surfaces �Im-

perial College Press, London, 2002�.
�27� P. Croce, L. Névot, and B. Pardo, C. R. Acad. Sci. �Paris� 274,

803 �1972�.
�28� P. Croce, L. Névot, and B. Pardo, C. R. Acad. Sci. �Paris� 274,

855 �1972�.
�29� P. Croce, Nouv. Rev. Opt. Appl. 3, 241 �1972�.
�30� P. Croce and L. Prud’Homme, Nouv. Rev. Opt. 7, 121 �1976�.
�31� P. Croce, J. Opt. �Paris� 23, 167 �1991�.
�32� R. C. McPhedran, L. C. Botten, M. S. Craig, M. Nevière, and

D. Maystre, Opt. Acta 29, 289 �1982�.
�33� J. M. Bell, G. H. Derrick, and R. C. Phedran, Opt. Acta 29,

1475 �1982�.

J. MEUNIER PHYSICAL REVIEW E 75, 061601 �2007�

061601-8


